Skip to content

TopoGraph: an End-To-End Framework to Build and Analyze Graph Cubes

Graphs are a fundamental structure that provides an intuitive abstraction for modelling and analyzing complex and highly interconnected data. Given the potential complexity of such data, some approaches proposed extending decision-support systems with multidimensional analysis capabilities over graphs. In this paper, we introduce TopoGraph, an end-to-end framework for building and analyzing graph cubes. TopoGraph extends the existing graph cube models by defining new types of dimensions and measures and organizing them within a multidimensional space that guarantees multidimensional integrity constraints. This results in defining three new types of graph cubes: property graph cubes, topological graph cubes, and graph-structured cubes. Afterwards, we define the algebraic OLAP operations for such novel cubes. We implement and experimentally validate TopoGraph with different types of real-world datasets.

 

The paper will be published soon in Information Systems Frontiers, and is already available online on Springer. Currently, it is unfortunately available only to subscribers, but do not hesitate to reach out to us for more information!

 

Amine Ghrab, Oscar Romero, Sabri Skhiri, Esteban Zimányi, TopoGraph: an End-To-End Framework to Build and Analyze Graph Cubes, published in Information Systems Frontiers (2020).

 

 

Releated Posts

Evaluation of GraphRAG Strategies for Efficient Information Retrieval

Traditional RAG systems struggle to capture relationships and cross-references between different sources unless explicitly mentioned. This challenge is common in real-world scenarios, where information is often distributed and interlinked, making graphs a more effective representation. Our work provides a technical contribution through a comparative evaluation of retrieval strategies within GraphRAG, focusing on context relevance rather than abstract metrics. We aim to offer practitioners actionable insights into the retrieval component of the GraphRAG pipeline.
Read More

Flight Load Factor Predictions based on Analysis of Ticket Prices and other Factors

The ability to forecast traffic and to size the operation accordingly is a determining factor, for airports. However, to realise its full potential, it needs to be considered as part of a holistic approach, closely linked to airport planning and operations. To ensure airport resources are used efficiently, accurate information about passenger numbers and their effects on the operation is essential. Therefore, this study explores machine learning capabilities enabling predictions of aircraft load factors.
Read More