Skip to content

EQS: an elastic and scalable message queue for the cloud

With the emergence of cloud computing, on-demand resources usage is made possible. This allows applications to elastically scale out according to the load. One design pattern that suits this paradigm is the event-driven architecture (EDA) in which messages are sent asynchronously between distributed application instances using message queues. However, existing message queues are only able to scale for a certain number of clients and are not able to scale out elastically. We present the Elastic Queue Service (EQS), an elastic message queue architecture and a scaling algorithm which can be adapted to any message queue in order to make it scale elastically. EQS architecture is layered onto multiple distributed components and its management components can be integrated with the cloud infrastructure management. We have implemented a prototype of EQS and deployed it on a cloud infrastructure. A series of load testings have validated our elastic scaling algorithm and show that EQS is able to scale out in order to adapt to an applied load. We then discuss about the elastic scaling of the management layers of EQS and their possible integration with the cloud infrastructure management.

Nam-Luc Tran, Sabri Skhiri, and Esteban Zimány, EQS: An Elastic and Scalable Message Queue for the Cloud, proceedings of the 3rd International IEEE conference on Cloud computing technology and science (IEEE CloudCom 2011), Athens, Greece, November 2011.

Click here to access the paper.

Releated Posts

The Building Blocks of a Responsible AI Practice: An Outlook on the Current Landscape

Responsible AI comes with the challenge of implementation. This survey aims to bridge the gap between principles and practice through a study of different approaches taken in the literature and the proposition of a foundational framework.
Read More

TS-Relax : Interprétation des représentations apprises pour les séries temporelles

Les modèles d’apprentissage de représentations sont de plus en plus utilisés, mais des modèles d’IA explicables et de confiance sont nécessaires. Ce travail présente l’adaptation aux séries temporelles d’une méthode d’interprétation de représentation initialement conçue pour les images.
Read More