Skip to content

Hypergraph-based image retrieval for graph-based representation

In this paper, we introduce a novel method for graph indexing. We propose a hypergraph-based model for graph data sets by allowing cluster overlapping. More precisely, in this representation one graph can be assigned to more than one cluster. Using the concept of the graph median and a given threshold, the proposed algorithm detects automatically the number of classes in the graph database. We consider clusters as hyperedges in our hypergraph model and we index the graph set by the hyperedge centroids. This model is interesting to traverse the data set and efficient to retrieve graphs.

Salim Jouili, and Salvatore Tabbone, Hypergraph-based image retrieval for graph-based representation. Journal of the Pattern Recognition Society, April 2012. © 2012 Elsevier Ltd.

Click here to access the paper.

Releated Posts

IEEE Big Data 2023 – A Summary

Our CTO, Sabri Skhiri, recently travelled to Sorrento for IEEE Big Data 2023. In this article, Sabri explores for you the various keynotes and talks that took place during the
Read More

Robust ML Approach for Screening MET Drug Candidates in Combination with Immune Checkpoint Inhibitors

Present study highlights the significance of dataset size in ICI microbiota models and presents a methodology to enhance the performances of a multi-cohort-based ML approach.
Read More