Skip to content

Discovering Interesting Patterns in Large Graph Cubes

Due to the increasing importance and volume of highly interconnected data, such as in social or information networks, a plethora of graph mining techniques have been designed to enable the analysis of such data. In this work, we focus on the mining of associations between entity features in networks. We model each entity feature as a dimension to be analyzed. Consequently we build our approach on top of the existing graph cube framework which is an extension of the concept of the data cube to networks. Our task is particularly challenging because it requires the analysis of both the initial multidimensional network and all its subsequent aggregate forms. As soon as we deal with a big data situation it is impossible for an analyst to consider manually all the possible views of the network data. The aim of this work is to design an algorithm for the discovery of interesting patterns in large graph cubes. Thus, instead of examining all the possible aggregations manually, the proposed technique leads the analyst to the interesting associations or patterns in the multidimensional network. Furthermore, we study the application of existing algorithms from the frequent itemset mining literature on graph data and propose a mapping between the two settings.

Florian Demesmaeker, Amine Ghrab, Siegfried Nijssen, Sabri Skhiri: Discovering interesting patterns in large graph cubes. 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 2017, pp. 3322-3331.

Click here to access the paper.

Releated Posts

Insights from GTC Paris 2025

Among the NVIDIA GTC Paris crowd was our CTO Sabri Skhiri, and from quantum computing breakthroughs to the full-stack AI advancements powering industrial digital twins and robotics, there is a lot to share! Explore with Sabri GTC 2025 trends, keynotes, and what it means for businesses looking to innovate.
Read More

Development & Evaluation of Automated Tumour Monitoring by Image Registration Based on 3D (PET/CT) Images

Tumor tracking in PET/CT is essential for monitoring cancer progression and guiding treatment strategies. Traditionally, nuclear physicians manually track tumors, focusing on the five largest ones (PERCIST criteria), which is both time-consuming and imprecise. Automated tumor tracking can allow matching of the numerous metastatic lesions across scans, enhancing tumor change monitoring.
Read More