Skip to content

Discovering Interesting Patterns in Large Graph Cubes

Due to the increasing importance and volume of highly interconnected data, such as in social or information networks, a plethora of graph mining techniques have been designed to enable the analysis of such data. In this work, we focus on the mining of associations between entity features in networks. We model each entity feature as a dimension to be analyzed. Consequently we build our approach on top of the existing graph cube framework which is an extension of the concept of the data cube to networks. Our task is particularly challenging because it requires the analysis of both the initial multidimensional network and all its subsequent aggregate forms. As soon as we deal with a big data situation it is impossible for an analyst to consider manually all the possible views of the network data. The aim of this work is to design an algorithm for the discovery of interesting patterns in large graph cubes. Thus, instead of examining all the possible aggregations manually, the proposed technique leads the analyst to the interesting associations or patterns in the multidimensional network. Furthermore, we study the application of existing algorithms from the frequent itemset mining literature on graph data and propose a mapping between the two settings.

Florian Demesmaeker, Amine Ghrab, Siegfried Nijssen, Sabri Skhiri: Discovering interesting patterns in large graph cubes. 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 2017, pp. 3322-3331.

Click here to access the paper.

Releated Posts

2022 Wrap Up

We got a deep dive into some of the most memorable moments of 2022.
Read More

IEEE Big Data 2022: the key takeaways

In December 2022, our research director Sabri Skhiri travelled to Osaka to attend IEEE Big Data 2022. He sums up the main trends, and shares his favourite talks and papers.
Read More