Privacy Policy Classification with XLNet

The popularisation of privacy policies has become an attractive subject of research in recent years, notably after the General Data Protection Regulation came into force in the European Union. While GDPR gives Data Subjects more rights and control over the use of their personal data, length and complexity of privacy policies can still prevent them from exercising those rights. An accepted way to improve the interpretability of privacy policies is…

Continue reading

Towards Privacy Policy Conceptual Modeling

After GDPR enforcement in May 2018, the problem of implementing privacy by design and staying compliant with regulations has been more prominent than ever for businesses of all sizes, which is evident from frequent cases against companies and significant fines paid due to non-compliance. Consequently, numerous research works have been emerging in this area….

Continue reading

Applying Machine Learning Modeling to Enhance Runway Throughput at A Big European Airport

One of the factors limiting busiest airport’s runway throughput capacity is the spacing to be applied between landing aircraft in order to ensure that the runway is vacated when the follower aircraft reaches the runway threshold. Today, because the Controller is not able to always anticipate the runway occupancy time (ROT) of the leader aircraft, significant spacing buffers are added to the minimum required spacing in order to cover all possible cases, which negatively affects the resulting arrival throughput. The present paper shows how a Machine Learning (ML) analysis can support the development of accurate, yet operational, models for ROT prediction depending on all impact parameters. Based on Gradient Boosting Regressors, those ML models make use of flight plan information (such as aircraft type, airline, flight data) and weather information to model the ROT. This paper shows how it can be used operationally to increase runway capacity while maintaining or reducing the risk of delivery of separations below runway occupancy time. The methodology and related benefits are assessed using three years of field measurements gathered at Zurich airport.

You can find the slide here and the paper here.

Guillaume Stempfel, Victor Brossard, Ivan De Visscher, Antoine Bonnefoy, Mohamed Ellejmi,  Vincent Treve ̧ Applying Machine Learning Modeling to Enhance Runway Throughput at A Big European Airport, Proc. of the 10th EASN International Conference on “Innovation in Aviation & Space to the Satisfaction of the European Citizens, Naples, Italy, 2020.