Skip to content

A Framework Using Contrastive Learning for Classification with Noisy Labels

We propose a framework using contrastive learning as a pre-training task to perform image classification in the presence of noisy labels. Recent strategies, such as pseudo-labelling, sample selection with Gaussian Mixture models, and weighted supervised contrastive learning have been combined into a fine-tuning phase following the pre-training. In this paper, we provide an extensive empirical study showing that a preliminary contrastive learning step brings a significant gain in performance when using different loss functions: non robust, robust, and early-learning regularized. Our experiments performed on standard benchmarks and real-world datasets demonstrate that: (i) the contrastive pre-training increases the robustness of any loss function to noisy labels and (ii) the additional fine-tuning phase can further improve accuracy but at the cost of additional complexity.

Madalina Ciortan, Romain Dupuis and Thomas Peel, A Framework Using Contrastive Learning for Classification with Noisy Labels, Data, 2021, 6, 61.

DOI: https://doi.org/10.3390/data6060061

Watch the presentation on YouTube.

Public implementation: https://github.com/ciortanmadalina/constrastive-noisy-label

Click here to access the paper.

Releated Posts

Insights From Flink Forward 2024

In October, our CTO Sabri Skhiri attended the Flink Forward conference, held in Berlin, which marked the 10-year anniversary of Apache Flink. This event brought together experts and enthusiasts in the field of stream processing to discuss the latest advancements, challenges, and future trends. In this article, Sabri will delve into some of the keynotes and talks that took place during the conference, highlighting the noteworthy insights and innovations shared by Ververica and industry leaders.
Read More

Internships 2025

This document presents internships supervised by our consulting department or by our research & development department. Each project is an opportunity to feel both empowered and responsible for your own professional development and for your contribution to the company.
Read More