Skip to content

A Combined Rule-Based and Machine Learning Approach for Automated GDPR Compliance Checking

The General Data Protection Regulation (GDPR) requires data controllers to implement end-to-end compliance. Controllers must therefore ensure that the terms agreed with the data subject and their own obligations under GDPR are respected in the data flows from data subject to controllers, processors and sub-processors (i.e. data supply chain). This paper seeks to contribute to bridging both ends of compliance checking through a two-pronged study. First, we conceptualize a framework to implement a document-centric approach to compliance checking in the data supply chain. Second, we develop specific methods to automate compliance checking of privacy policies. We test a two-modules system, where the first module relies on NLP to extract data practices from privacy policies. The second module encodes GDPR rules to check the presence of mandatory information. The results show that the text-to-text approach outperforms local classifiers and enables the extraction of both coarse-grained and fine-grained information with only one model. We implement a full evaluation of our system on a dataset of 30 privacy policies annotated by legal experts. We conclude that this approach could be generalized to other documents in the data supply as a means to improve end-to-end compliance.

Rajaa El Hamdani, Majd Mustapha, David Restrepo Amariles, Aurore Troussel, Sébastien Meeus, Katsiaryna Krasnashchok, A Combined Rule-Based and Machine Learning Approach for Automated GDPR Compliance Checking, Proc. of the 18th International Conference on Artificial Intelligence and Law, 2021

Watch the presentation on YouTube.

Click here to access the paper.

Releated Posts

Evaluation of GraphRAG Strategies for Efficient Information Retrieval

Traditional RAG systems struggle to capture relationships and cross-references between different sources unless explicitly mentioned. This challenge is common in real-world scenarios, where information is often distributed and interlinked, making graphs a more effective representation. Our work provides a technical contribution through a comparative evaluation of retrieval strategies within GraphRAG, focusing on context relevance rather than abstract metrics. We aim to offer practitioners actionable insights into the retrieval component of the GraphRAG pipeline.
Read More

Flight Load Factor Predictions based on Analysis of Ticket Prices and other Factors

The ability to forecast traffic and to size the operation accordingly is a determining factor, for airports. However, to realise its full potential, it needs to be considered as part of a holistic approach, closely linked to airport planning and operations. To ensure airport resources are used efficiently, accurate information about passenger numbers and their effects on the operation is essential. Therefore, this study explores machine learning capabilities enabling predictions of aircraft load factors.
Read More