Skip to content

Multimodal Classifier For Space Target Recognition

In this paper, we propose a multi-modal framework to tackle the SPARK Challenge by classifying satellites using RGB and depth images. Our framework is mainly based on Auto-Encoders (AE)s to embed the two modalities in a common latent space in order to exploit redundant and complementary information between the two types of data.

Ichraf Lahouli, Mahmoud Jarraya, and Gianmarco Aversano, Multimodal Classifier For Space Target Recognition, In Proc. of The 2021 IEEE International Conference on Image Processing, September 2021.

Click here to access the paper.

Releated Posts

Development & Evaluation of Automated Tumour Monitoring by Image Registration Based on 3D (PET/CT) Images

Tumor tracking in PET/CT is essential for monitoring cancer progression and guiding treatment strategies. Traditionally, nuclear physicians manually track tumors, focusing on the five largest ones (PERCIST criteria), which is both time-consuming and imprecise. Automated tumor tracking can allow matching of the numerous metastatic lesions across scans, enhancing tumor change monitoring.
Read More

Insights from Data & AI Tech Summit Warsaw 2025

11 editions later, one of the biggest technological conferences in Central Europe changed its name to reflect the latest technological advancements. The BIG DATA TECHNOLOGY WARSAW SUMMIT became the DATA & AI WARSAW TECH SUMMIT, and the conference provided a rich platform for gaining fresh perspectives on data and AI. Our CTO, Sabri Skhiri, was present to gather the insights. Here’s a rundown of the key trends, keynotes and talks that took place.
Read More