Skip to content

Discovering Interesting Patterns in Large Graph Cubes

Due to the increasing importance and volume of highly interconnected data, such as in social or information networks, a plethora of graph mining techniques have been designed to enable the analysis of such data. In this work, we focus on the mining of associations between entity features in networks. We model each entity feature as a dimension to be analyzed. Consequently we build our approach on top of the existing graph cube framework which is an extension of the concept of the data cube to networks. Our task is particularly challenging because it requires the analysis of both the initial multidimensional network and all its subsequent aggregate forms. As soon as we deal with a big data situation it is impossible for an analyst to consider manually all the possible views of the network data. The aim of this work is to design an algorithm for the discovery of interesting patterns in large graph cubes. Thus, instead of examining all the possible aggregations manually, the proposed technique leads the analyst to the interesting associations or patterns in the multidimensional network. Furthermore, we study the application of existing algorithms from the frequent itemset mining literature on graph data and propose a mapping between the two settings.

Florian Demesmaeker, Amine Ghrab, Siegfried Nijssen, Sabri Skhiri: Discovering interesting patterns in large graph cubes. 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 2017, pp. 3322-3331.

Click here to access the paper.

Releated Posts

Evaluation of GraphRAG Strategies for Efficient Information Retrieval

Traditional RAG systems struggle to capture relationships and cross-references between different sources unless explicitly mentioned. This challenge is common in real-world scenarios, where information is often distributed and interlinked, making graphs a more effective representation. Our work provides a technical contribution through a comparative evaluation of retrieval strategies within GraphRAG, focusing on context relevance rather than abstract metrics. We aim to offer practitioners actionable insights into the retrieval component of the GraphRAG pipeline.
Read More

Flight Load Factor Predictions based on Analysis of Ticket Prices and other Factors

The ability to forecast traffic and to size the operation accordingly is a determining factor, for airports. However, to realise its full potential, it needs to be considered as part of a holistic approach, closely linked to airport planning and operations. To ensure airport resources are used efficiently, accurate information about passenger numbers and their effects on the operation is essential. Therefore, this study explores machine learning capabilities enabling predictions of aircraft load factors.
Read More