Euranova has 3 fundamental pillars: explore, craft and serve. The explore pillar of Euranova is an independent research centre dedicated to data science, software engineering and AI.
Through the exploration of tomorrow’s engineering and data science to answer today’s problems, our research centre is dedicated to anticipating the challenges that European businesses face. We find solutions to current and future digital challenges with passion, creativity and integrity.

Euranova has 3 fundamental pillars: explore, craft and serve. The explore pillar of Euranova is an independent research centre dedicated to data science, software engineering and AI.
Through the exploration of tomorrow’s engineering and data science to answer today’s problems, our research centre is dedicated to anticipating the challenges that European businesses face. We find solutions to current and future digital challenges with passion, creativity and integrity.

Estimating Expected Calibration Errors

Uncertainty in probabilistic classifiers predictions is a key concern when models are used to support human decision making, in broader probabilistic pipelines or when sensitive automatic decisions have to be taken.
Studies have shown that most models are not intrinsically well calibrated, meaning that their decision scores are not consistent.

read more »

10 Papers in 2021

To answer today’s problems, our research centre is dedicated to anticipating the challenges that European businesses face. Find out the impacts of our latest published papers.

read more »

DMMM: Data Management Maturity Model

The assessment of the digital transformation progress is essential to understand and undertake in order to evaluate the level of maturity of data-driven companies in terms of data capabilities and to plan for improvement actions.

read more »

A Survey of Maturity Models in Data Management

Maturity models are helpful business tools that refine and develop how organizations conduct their businesses and benchmark their maturity status against a scale or with industry peers. They serve to prioritize the actions for improvement better and control the progress in reaching the target maturity stage.

read more »

Towards a Continuous Evaluation of Calibration

For safety-critical systems involving AI components (such as in planes, cars, or healthcare), safety and associated certification tasks are one of the main challenges, which can become costly and difficult to address.

One key aspect is to ensure that the decisions a machine-learning classifier makes are properly calibrated.

read more »